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Latt ice  P a r a m e t e r s *  
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A computer code has been developed for the precision determination of crystal lattice parameters, 
using the Hess method as a basis with the following modifications: (1) No approximations are made 
in the solution of the observation equation and (2) The method is extended to the hexagonal and 
orthorhombie crystal systems and to additional extrapolation functions. In  the majori ty of the 
determinations, with randomly selected materials, the Hess approximation gave results comparable 
with the exact technique; however, because of certain restrictions the exact technique is recom- 
mended. 

Introduct ion  

The precision determinat ion of latt ice parameters  is 
a powerful technique for basic studies of the solid 
state. Examples  include the precise measurement  of 
bond distances, true densities, thermal  expansions, 
compressibilities, and  solid-solution effects. 

Graphical  extrapolat ion methods for the e l iminat ion 
of systematic  errors in la t t ice-parameter  measure- 
ments  have been t reated by  m a n y  investigators.  
Their correct usage has been discussed by Kempter 
(1959), and  the most useful extrapolat ion functions 
t abu la ted  as a funct ion of Bragg angle. 

Analy t ica l  methods have been discussed by  Cohen 
(1935, 1936a, 1936b) and  Hess (1951). These methods 
are more readi ly  applicable than  extrapolat ion meth- 
ods to non-cubic crystal  systems, but  the complexi ty  
of the calculations necessitates the use of a computing 

* This paper is based on Los Alamos Scientific Laboratory 
Report LA-2317, April 1959. 

Present address: Kaman Corporation, Colorado Springs, 
Colorado. 

machine.  Of the two analyt ica l  methods,  the Hess 
method is preferable since i t  assigns statist ical  weights 
to the observed points. This weighting is a necessity 
since the weighting funct ion increases t remendously  
as the Bragg angle approaches 90 ° 0. 

For the cubic system, using a Debye-Scherrer  or 
symmetr ica l  back-reflection focusing camera, Hess 
s tar ted his f i t t ing procedure with the following general 
equation expressing the funct ion F.  

F= A0~ + K0~- 7, (1) 
where 

A o = 1/ao 2 ; 

a = ½22n2(h ~ + k 2 + 12) ; 

a0 = the latt ice parameter ;  

2 = wave length, 
n = an integer, 

hkl = Miller indices; 

K0 = the 'drif t  constant '  ; 

(5= ¢ sin ¢ ,  the error term, which assumes 
zJ ~b oc ¢ ,  where ¢ = ~ -  20 ; 

y = 1 + cos ¢ = 2 sin 2 0 .  
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By setting K0 equal to zero, Hess calculated values 
of 2'0 at every observed point  and  also arr ived at  the 
weighting funct ion cosec ~ ¢ .  Using Deming 's  (1943) 
method,  he solved for Ao and  K0 and then  for a0. 
Hess also t reated the tetragonal  lat t ice and the flat- 
f i lm symmetr ica l  back-reflection camera. 

The following general equations apply  for the crystal  
systems treated in this article, where a0, b0, and  co 
are the latt ice parameters ,  T~= llao 2 (except for the 
hexagonal  system), T2=K0,  the 'drif t  constant ' ,  
T~ = l/c02, Ta = l/b09, xe = the error term, xa = ½2el 2, 
xa=½2ek 9, and y = 7 .  (See equat ion (1) for the defini- 
t ion of 2 and hkl). The integer n is omit ted since it is 
equal  to unity.  

Cubic F --- 
where x~ = 

Tetragonal F = 
where xl = 

Hexagonal F = 
where T~ = 

Orthorhombic ~ = 
where xl = 

Tlx l  + T 2 x 2 -  y ,  (2) 
½2~(h ~ + k~ + 12) . 

T l x l  + T3x3 + T z x 2 - y  , (3) 
122(h2 + k2). 

Tlx l  + Tsx8 + T2x9 - y ,  (4) 
41(3a02) ; x l  = ½ 2.2(h2 + hk + k 2) . 

T l x l  + Tsx3 + T4x~ + T 2 x 2 -  y ,  (5) 
½22h ~. 

The error te rm x2 is selected according to the 
measurement  geometry and  the exper imenta l  tech- 
niques used (Kempter,  1959). :By defini t ion xe-- 
A ¢ sin ¢ / K o ,  where ¢ = ( g -  20). 

For the symmetr ica l  back-reflection focusing cam- 
era, the systemat ic  errors in A ao/ao are proport ional  
to q~ tan  qg, where q9 = (90 ° -  0) = ½¢. Therefore, (5 = 
K 0 ¢  sin q~/Ko = fI) sin ~b. In  terms of back-reflection 
ring diameter,  s, and  camera diameter ,  D, 

x2=(s /2D)  sin (s/2D) . (6) 

For the Debye-Scherrer  camera, the systemat ic  
errors in Aao/ao are proport ional  to q0 t an  ~, cos z 0, or 
½[(cos 2 0/sin 0 )+  (cos 2 0/0)] depending upon the ex- 
per imenta l  techniques used. Therefore, x2 = ~b sin ¢ ,  
sin220, or s ine20[( l l s inO)+( l lO)] ,  respectively. In  
terms of s and D these become: 

8 8 x2= ~ s i n ~ .  (7) 

x2 ---- sin 2 
1] 

For the dfffractometer,  the  systemat ic  errors in 
A ao/ao caused by  displacement  of the specimen surface 
from focusing circle are proport ional  to cos 0 cot 0. 
Therefore, xg=s in  0 cos ~ 0. Since 20 is the measure- 
ment  made  in this  method,  the f inal  equat ion becomes : 

x 2 = s i n ~  cos2 ~ . (10) 

Other error terms m a y  of course be subst i tu ted 
and/or addit ional  error terms added by  solving for 
A ¢  and then  for x2. The angles in equations (6) 
through (9) are in radians.  

No a t t empt  was made  to extend the code to the 
monoclinic and triclinic crystal  systems because of 
their  l imited usefulness; the rhombohedra l  system 
m a y  of course be indexed on hexagonal  axes. 

M a t h e m a t i c a l  t r e a t m e n t  

The problem is to determine est imates of the param- 
eters for equations (2), (3), (4) and  (5). A general 
equation, which includes (2), (3), (4), and  (5), can be 
wri t ten:  

ye = ~ T ix i e ,  (11) 
i = 1  

where e = 1, . . . ,  N ;  N = number  of exper imenta l  da ta  
points and  m = 2  for the cubic system, m = 3  for the 
tetragonal  and  hexagonal  systems, and  m = 4  for the 
orthorhombic.  The variables  ye and X2e are both func- 
tions of 0. 

Es t imates  of the parameters ,  T, can be obtained 
from the exper imenta l  da ta  by  the method  of least- 
squares. Minimizing the funct ion 

where 

N 

Q -__ . ~  W e R e  2 , ( 1 2 )  

e = l  

We = the  weight associated with each Fe 

m 

Fe = , S  n i x i e -  ye 
i=1 

a i - - t h e  least-squares est imate of Ti 

will give the weighted least-squares es t imate  of the  
parameters.  . 

The weighting funct ion (Hald, 1952), We, used is 
inversely proport ional  to the variance,  a2Fe of Fe. 
One can show by  using error propagation tha t  

(~'Fe'~ 2 (13) 

(8) The random error of 0e is assumed constant* and  acts 
as a proport ional i ty  constant  which can be ignored 
in the analysis,  so tha t  

(9) 1 
We = (14) 

- - - -  a i  ~ 
i=1 ~0e 00e/ 

Because We is a funct ion of the parameters ,  an 
i tera t ive  method described by  Deming (1943) is used 
to minimize  Q. Wi th  a set of ini t ial  est imates for the 
parameters,  a~, the i terat ion procedure cont inual ly  

* The reading of a large number of diffraction films have 
shown this assumption to be valid. 
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computes corrections to these estimates until such 
corrections are deemed 'sufficiently small'. 

Estimates of the standard deviations of the param- 
eters can be shown to be 

QF (15) s.]).o~ = ( ~ z ~ .  x-~,) ~ , 

where QF=the value of Q obtained from the last 
iteration, and x-lii is the ii element of the inverse of 
the matrix 

m 

e = l  e = l  

xij = : : (16) 
m 

.X W~x~x~. . . ~ W~XPm~ 
e = l  e = l  

The standard deviation of the parameter(s) is used 
in determining confidence limits and also in testing 
to see if the parameters are significantly different from 
zero (Hald, 1952). 

I t  should be pointed out that  stopping after the 
first iteration, as Hess (1951) has suggested, is not 
theoretically sufficient when computing the standard 
deviation of the parameters. Although K0 values are 
quite small, it has been shown that there exist some 
K0's which are statistically significantly different 
from zero. Hence, using zero as the approximation for 
K0 will not always give the statistically best estimate 
of the IIx~jl1-1 matrix, which one uses in the computa- 
tion of the standard deviation. I t  is recommended 
that if one uses such an approximation, i.e., setting 
K0 equal to zero and stopping after the first iteration, 
the llx~jl1-1 matrix and the Q function should be com- 
puted with the new approximations before computing 
the standard deviation of the parameters. 

A useful subjective technique to determine the 
'reasonableness' of the fit is to order the y observed 
values and compare them with the y's which have 
been calculated from the x's and the fitted parameters. 
By forming y observed minus y calculated, and ex- 
amining the signs of these differences, one can infer 
that  the fit is reasonable if the signs are randomly 
distributed. 

Although the iterative technique should be carried 
out until convergence is reached when using high. 
speed computers, it is of interest to those who do not 
have such facilities to evaluate an approximation 
technique for determining lattice parameters. Using 
K0 equal to zero and approximations for the lattice 
parameters good to three digits and stopping after 
the first iteration gave excellent approximations for 
the lattice parameters of the materials we tested. Just  
how well this approximation does compared to the 
convergent iterative technique is a function of K0 and 
the range of 0 used. 

Resul ts  and discuss ion  

The results for a number of representative examples 
of the problems and cases run are tabulated in Table 1 
in order of increasing mass absorption coefficients 
(tern in cm.eg.-1). The cubic, tetragonal, hexagonal, and 
orthorhombic crystal systems are designated as prob- 
lems 1, 2, 3, and 4 respectively; the error equations 
6, 7, 8, 9, and 10 are designated as cases 1A, 1B, 2, 3, 
and 4 respectively. K0 is the 'drift constant' and 
a0, b0, and co are the lattice parameters in _~ngstrSm 
units at 25 °C. ; a is the precision of the parameter 
expressed as the standard deviation. 

Each example was computed by two methods. The 
first, designated by AP, was an approximate tech- 
nique, i.e., setting K0 equal to zero and stopping 
after the first iteration. The standard deviation of the 
parameters were computed with the first IIx~[1-1 matrix 
and the correct Q function. The second method, de- 
signated by EX,  was an exact technique, i.e., con- 
tinuous iteration until convergence was reached. 

International Union of Crystallography standard 
specimens are designated I.U.C. Copper radiation 
(nickel filtered) was used in all cases, except for Li 
and UC, where cobalt radiation (iron filtered) and 
chromium radiation (vanadium filtered) were used, 
respectively. The lattice parameters are not corrected 
for refraction. Lonsdale's (1950) wavelengths were 
used in all computations. All specimens, except Li in 
the form of wire, were - 3 2 5  mesh and were not 
diluted. Debye-Scherrer specimens were run in 0-3 
mm. diameter Lindemann glass capillaries; back- 
reflection specimens were run on rubber-cement-- 
coated cardboard. Case 1A films were read by three 
readers, thus tripling the number of points. For 
numbers 20, 21, and 22, only very high Bragg angle 
reflections were measured. For cases 2 and 3, a film 
should properly be corrected for film shrinkage; in 
order to show the effect of this correction, the film 
for number 21 has been corrected for shrinkage. The 
film for beta tin is unique in that  the shrinkage cor- 
rection factor is unity. The lattice parameter obtained 
for number 7 has been corrected only for the spec- 
imen-surface displacement error. 

I t  was noted that  of the Debye-Seherrer films 
examined, the absolute value of K0 was highest for 
case 2, lowest for case 3, and intermediate for case lB. 
It  can be readily shown that K0 is actually an analyt- 
ical systematic-errors constant which is related to the 
extrapolation systematic-errors constant K"  by a 
simple relationship. Using the cubic system and case 1 
as an example:The error equation is 2ao/ao = K '~ tanT,  
where ~ =  (~ /2 -0 )  radians. In practice, values of the 
lattice parameter are plotted against corresponding 
values of ~ tan q~ and a linear extrapolation is carried 
out to q tan~  = 0. Therefore, a = K " ~ t a n ~  + a0, where 
K" is the slope and a0 is the y-intercept. Substituting 
3a0 for (a-ao) and dividing the equation by a0, 
we obtain: 
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zJao/ao=(K"/ao)q) tanq~, and K ' = K " / a o .  (17) 

By differentiation of the Bragg equation: 

zJao/ao= - c o t  OAO= - t a n  ~/]q9. (18) 

And since Ko=AqS/qS=Aq)/q),  and so zJq~=Koq): 

Aao/ao= -Koq)  tan q~=K'q~ tan ~ .  (19) 

.'. Ko = - K '  = - K"/ao . (20) 

Similarly it can be shown that  K'  =K"/ao  for all 
cases, and that  K0 = - K"/2a0, - K"/4ao, and - 2K"/ao 
for cases 2, 3, and 4 respectively. 

Since many factors influence the systematic-errors 
constant, it is very difficult to predict its value. 
Reference to Table 1 shows that a prediction cannot 
be made on the assumption that  absorption is the 
overriding cause of systematic error. 

An examination of Table 1 shows that, in general, 
the Hess method is an excellent approximation for the 
lattice parameters and K0 values for the problems and 
cases treated. All the lattice parameters are rounded 
off at the sixth decimal place, l i t  is standard practice 
to round off precision lattice parameters to five decimal 
places (since the wavelengths used have five decimal 
places) after the refraction correction has been added 
on.] I t  should be noted that  as the absolute value of 
K0 increases, the approximate lattice parameters 
diverge from the exact values; the a0 and co values 
for number 8 illustrate this divergence. The divergence 
also increases as the Bragg-angle range increases, as 
pointed out in the mathematical discussion. Thus, in 
using the approximate method, one must also be 
selective in choosing the Bragg angle range. Cases 1 
and 2 are properly applied to reflections greater than 
57 ° and 60 ° 0, respectively; however, cases 3 and 4 
have wide ranges of applicability. All the Bragg angles 
used in the preparation of Table 1 were back-reflection 
angles. 

Further examination of Table 1 illustrates the 
approximate method of computing standard devia- 
tions, i.e., using the first IIx,jI1-1 matrix obtained, is 

very good. I t  should be noted again that  as the 
absolute value of K0 increases, the approximation to 
the standard deviation of the parameters becomes 
poor (see number 8). I t  must be remembered that  
approximations made in this manner are only estimates 
for the standard deviations computed exactly, hence 
smaller standard deviations obtained by the approx- 
imation technique compared to the iterative-conver- 
gence technique does not imply that  one gets smaller 
errors in the lattice parameters by using the approx- 
imation technique. 

I t  is concluded that, in general, a single iterative 
technique (such as the Hess method) is an excellent 
approximation; however, in view of certain restric- 
tions, a convergent iterative technique is recom- 
mended. The advantage of the latter technique is that  
it yields the best estimate of the lattice parameter(s) 
and the standard deviation(s), regardless of the error 
function used. 

All computations in Table 1 were done with an 
IBM 704 Fortran code ~Titten by one of the authors 
(l~. E. Vogel). 
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Zeigler and R. H. Moore for their constructive crit- 
icisms and helpful suggestions, and to F. H. Ellinger 
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