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A Mathematical Technique for the Precision Determination of
Lattice Parameters¥*

By Ricuarp E. VogELt AND CHARLES P. KEMPTER

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, U.S. A.

(Recetved 1 February 1960 and in revised form 20 March 1961)

A computer code has been developed for the precision determination of crystal lattice parameters,
using the Hess method as a basis with the following modifications: (1) No approximations are made
in the solution of the observation equation and (2) The method is extended to the hexagonal and
orthorhombic crystal systems and to additional extrapolation functions. In the majority of the
determinations, with randomly selected materials, the Hess approximation gave results comparable
with the exact technique; however, because of certain restrictions the exact technique is recom-

mended.

Introduction

The precision determination of lattice parameters is
a powerful technique for basic studies of the solid
state. Examples include the precise measurement of
bond distances, true densities, thermal expansions,
compressibilities, and solid-solution effects.

Graphical extrapolation methods for the elimination
of systematic errors in lattice-parameter measure-
ments have been treated by many investigators.
Their correct usage has been discussed by Kempter
(1959), and the most useful extrapolation functions
tabulated as a function of Bragg angle.

Analytical methods have been discussed by Cohen
(1935, 1936a, 1936b) and Hess (1951). These methods
are more readily applicable than extrapolation meth-
ods to non-cubic crystal systems, but the complexity
of the calculations necessitates the use of a computing

* This paper is based on Los Alamos Scientific Laboratory
Report LA-2317, April 1959.

T Present address: Kaman Corporation, Colorado Springs,
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machine. Of the two analytical methods, the Hess
method is preferable since it assigns statistical weights
to the observed points. This weighting is a necessity
since the weighting function increases tremendously
as the Bragg angle approaches 90° 6.

For the cubic system, using a Debye-Scherrer or
symmetrical back-reflection focusing camera, Hess
started his fitting procedure with the following general
equation expressing the function F.

F=Aozx+Ko(S—y, (1)
where
Ao=1/ae?;
o=} A2n2(h2 + k24 12);

ap=the lattice parameter;

A=wave length,
n=an integer,
hkl=Miller indices;

Ko=the ‘drift constant’;

0= sin @, the error term, which assumes
AD « @, where @=n—20;

y=1+cos@=2sin2 0.
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By setting Ko equal to zero, Hess calculated values
of Fo at every observed point and also arrived at the
weighting function cosec? @. Using Deming’s (1943)
method, he solved for 4o and Ko and then for ao.
Hess also treated the tetragonal lattice and the flat-
film symmetrical back-reflection camera.

The following general equations apply for the crystal
systems treated in this article, where ao, bo, and co
are the lattice parameters, T'1=1/a¢? (except for the
hexagonal system), Te=Ko, the ‘drift constant’,
Ts=1/co?, Ta=1/be?, x2=the error term, xz3=}A%2,
x4=2%22k%, and y=1. (See equation (1) for the defini-
tion of A and hkl). The integer » is omitted since it is
equal to unity.

Cubic F=Tx+Toxs—y, (2)
where ri=322(h2+ K2+ 12) .

Tetragonal F=Twx1+4Tsas+Toxza—y , 3)
where x1=%A2(h2+k?) .

Hexagonal F=Tx:1+Tsxs+Texa—y , (4)
where Ti=4/(3ae?); x1=3A2(R2+hk+k?).

Orthorhombic ~ F=Tx1+ Tara+Taxs+Toxz—y, (5)
where x1=}4A2h2.

The error term z is selected according to the
measurement geometry and the experimental tech-
niques used (Kempter, 1959). By definition zz=
AD sin ®/K,, where @ =(x—20).

For the symmetrical back-reflection focusing cam-
era, the systematic errors in Aao/ao are proportional
to @ tan @, where p=(90°—0)=34®. Therefore, o=
Ko® sin @/ Ko=Psin @. In terms of back-reflection
ring diameter, s, and camera diameter, D,

2= (s/2D) sin (s/2D) . (6)

For the Debye—Scherrer camera, the systematic
errors in Aag/as are proportional to ¢ tan ¢, cos? §, or
1[(cos? f/sin ) + (cos? 6/0)] depending upon the ex-
perimental techniques used. Therefore, z2=® sin @,
sin2 20, or sin? 20[(1/sin 6)+ (1/6)], respectively. In
terms of s and D these become:

8

x2=5sinﬁ . (7)
Zo =sin2 (n—i> . (8)
D
—aing _i) 1 1
Ze=sin (n D i p + (n s 9)
s (E‘ﬂ)) E) 2D

For the diffractometer, the systematic errors in
Aaolao caused by displacement of the specimen surface
from focusing circle are proportional to cos 6 cot 6.
Therefore, xza=sin 0 cos? f. Since 20 is the measure-
ment made in this method, the final equation becomes:

20

. 20
x2=sm7 cosZ — .

> (10)
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Other error terms may of course be substituted
and/or additional error terms added by solving for
AP and then for x.. The angles in equations (6)
through (9) are in radians.

No attempt was made to extend the code to the
monoclinic and triclinic crystal systems because of
their limited usefulness; the rhombohedral system
may of course be indexed on hexagonal axes.

Mathematical treatment

The problem is to determine estimates of the param-
eters for equations (2), (3), (4) and (5). A general
equation, which includes (2), (3), (4), and (5), can be
written:

m
Ye = 2 Tixie,

=1

(11)

where e=1, ..., N; N=number of experimental data
points and m=2 for the cubic system, m=3 for the
tetragonal and hexagonal systems, and m=4 for the
orthorhombic. The variables ¥, and 2. are both func-
tions of 0.

Estimates of the parameters, T, can be obtained
from the experimental data by the method of least-
squares. Minimizing the function

N
Q = ZWeFeza (12)
e=1

where
W.=the weight associated with each F

m
Fe=2(lixie—ye

=1

a;=the least-squares estimate of T';

will give the weighted least-squares estimate of the
parameters. .

The weighting function (Hald, 1952), W., used is
inversely proportional to the variance, 025, of Fe.
One can show by using error propagation that

OF,\*®
o2y, = (ﬁ) 02,

The random error of 6, is assumed constant* and acts
as a proportionality constant which can be ignored
in the analysis, so that

(13)

1

m axie 6ye 2
(2 @, v a—e)

We':'-

(14)

Because W, is a function of the parameters, an
jterative method described by Deming (1943) is used
to minimize Q. With a set of initial estimates for the
parameters, a;, the iteration procedure continually

* The reading of a large number of diffraction films have
shown this assumption to be valid.
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computes corrections to these estimates until such
corrections are deemed ‘sufficiently small’.

Estimates of the standard deviations of the param-
eters can be shown to be

(15)

3
S-D-a-;=( Qr -x*lti) s

N—m

where Qr=the value of @ obtained from the last
iteration, and x~1;; is the 77 element of the inverse of
the matrix

m m
Wex?ie. .. 2 WeieTme
e=1 e=1
Zij = (16)
m m
P Wexlexme- .. 2 Wexzme
e=1 e=1

The standard deviation of the parameter(s) is used
in determining confidence limits and also in testing
to see if the parameters are significantly different from
zero (Hald, 1952).

It should be pointed out that stopping after the
first iteration, as Hess (1951) has suggested, is not
theoretically sufficient when computing the standard
deviation of the parameters. Although Ko, values are
quite small, it has been shown that there exist some
Ko's which are statistically significantly different
from zero. Hence, using zero as the approximation for
K, will not always give the statistically best estimate
of the |jz;||-! matrix, which one uses in the computa-
tion of the standard deviation. It is recommended
that if one uses such an approximation, i.e., setting
Ko equal to zero and stopping after the first iteration,
the [Jz;;]~! matrix and the ¢ function should be com-
puted with the new approximations before computing
the standard deviation of the parameters.

A useful subjective technique to determine the
‘reasonableness’ of the fit is to order the y observed
values and compare them with the y’s which have
been calculated from the 2’s and the fitted parameters.
By forming y observed minus y calculated, and ex-
amining the signs of these differences, one can infer
that the fit is reasonable if the signs are randomly
distributed.

Although the iterative technique should be carried
out until convergence is reached when using high-
speed computers, it is of interest to those who do not
have such facilities to evaluate an approximation
technique for determining lattice parameters. Using
Ko equal to zero and approximations for the lattice
parameters good to three digits and stopping after
the first iteration gave excellent approximations for
the lattice parameters of the materials we tested. Just
how well this approximation does compared to the
convergent iterative technique is a function of Ko and
the range of 6 used.

PRECISION DETERMINATION OF LATTICE PARAMETERS

Results and discussion

The results for a number of representative examples
of the problems and cases run are tabulated in Table 1
in order of increasing mass absorption coefficients
(¢m in cm.2g.~1). The cubie, tetragonal, hexagonal, and
orthorhombic crystal systems are designated as prob-
lems 1, 2, 3, and 4 respectively; the error equations
6,7, 8,9, and 10 are designated as cases 14, 1B, 2, 3,
and 4 respectively. Ky is the ‘drift constant’ and
ao, bo, and co are the lattice parameters in Angstrom
units at 25 °C.; o is the precision of the parameter
expressed as the standard deviation.

Each example was computed by two methods. The
first, designated by 4P, was an approximate tech-
nique, i.e., setting Ko equal to zero and stopping
after the first iteration. The standard deviation of the
parameters were computed with the first (jzy||! matrix
and the correct ¢ function. The second method, de-
signated by EX, was an exact technique, i.e., con-
tinuous iteration until convergence was reached.

International Union of Crystallography standard
specimens are designated I.U.C. Copper radiation
(nickel filtered) was used in all cases, except for Li
and UC, where cobalt radiation (iron filtered) and
chromium radiation (vanadium filtered) were used,
respectively. The lattice parameters are not corrected
for refraction. Lonsdale’s (1950) wavelengths were
used in all computations. All specimens, except Li in
the form of wire, were —325 mesh and were not
diluted. Debye—Scherrer specimens were run in 0-3
mm. diameter Lindemann glass capillaries; back-
reflection specimens were run on rubber-cement—
coated cardboard. Case 14 films were read by three
readers, thus tripling the number of points. For
numbers 20, 21, and 22, only very high Bragg angle
reflections were measured. For cases 2 and 3, a film
should properly be corrected for film shrinkage; in
order to show the effect of this correction, the film
for number 21 has been corrected for shrinkage. The
film for beta tin is unique in that the shrinkage cor-
rection factor is unity. The lattice parameter obtained
for number 7 has been corrected only for the spec-
imen-surface displacement error.

It was noted that of the Debye—Scherrer films
examined, the absolute value of Ko was highest for
case 2, lowest for case 3, and intermediate for case 1B.
It can be readily shown that K, is actually an analyt-
ical systematic-errors constant which is related to the
extrapolation systematic-errors constant K by a
simple relationship. Using the cubic system and case 1
as an example: The error equation is Aao/ao=K'gptaneg,
where ¢ =(7/2—0) radians. In practice, values of the
lattice parameter are plotted against corresponding
values of ¢ tan ¢ and a linear extrapolation is carried
out to ptang=0. Therefore, a =K' ptang+ao, where
K" is the slope and a is the y-intercept. Substituting
Aay for (a—ao) and dividing the equation by ao,
we obtain:
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Aaojao= (K" |ao)p tan @, and K'=K"[ao. (17)
By differentiation of the Bragg equation:
Aagjao= —cot 040 = —tan pA¢ . (18)
And since Ko=A®|P=Ad¢p/p, and so dp=Kop:
Aaojao= —Kop tan p=K'¢ tan ¢ . (19)
. Ko=—K'=—~K"|ao. (20)

Similarly it can be shown that K'=K"/ay for all
cases, and that Ko= — K''[2a0, — K"’ [4ao, and —2K"'[ao
for cases 2, 3, and 4 respectively.

Since many factors influence the systematic-errors
constant, it is very difficult to predict its value.
Reference to Table 1 shows that a prediction cannot
be made on the assumption that absorption is the
overriding cause of systematic error.

An examination of Table 1 shows that, in general,
the Hess method is an excellent approximation for the
lattice parameters and Ko values for the problems and
cases treated. All the lattice parameters are rounded
off at the sixth decimal place. [It is standard practice
to round off precision lattice parameters to five decimal
places (since the wavelengths used have five decimal
places) after the refraction correction has been added
on.] It should be noted that as the absolute value of
Koy increases, the approximate lattice parameters
diverge from the exact values; the ao and co values
for number 8 illustrate this divergence. The divergence
also increases as the Bragg-angle range increases, as
pointed out in the mathematical discussion. Thus, in
using the approximate method, one must also be
selective in choosing the Bragg angle range. Cases 1
and 2 are properly applied to reflections greater than
57° and 60° 0, respectively; however, cases 3 and 4
have wide ranges of applicability. All the Bragg angles
used in the preparation of Table 1 were back-reflection
angles.

Further examination of Table 1 illustrates the
approximate method of computing standard devia-
tions, i.e., using the first |lz;||~! matrix obtained, is

PRECISION DETERMINATION OF LATTICE PARAMETERS

very good. It should be noted again that as the
absolute value of Ky increases, the approximation to
the standard deviation of the parameters becomes
poor (see number 8). It must be remembered that
approximations made in this manner are only estimates
for the standard deviations computed exactly, hence
smaller standard deviations obtained by the approx-
imation technique compared to the iterative-conver-
gence technique does not imply that one gets smaller
errors in the lattice parameters by using the approx-
imation technique.

It is concluded that, in general, a single iterative
technique (such as the Hess method) is an excellent
approximation; however, in view of certain restric-
tions, a convergent iterative technique is recom-
mended. The advantage of the latter technique is that
it yields the best estimate of the lattice parameter(s)
and the standard deviation(s), regardless of the error
function used.

All computations in Table 1 were done with an
IBM 704 Fortran code written by one of the authors
(R. E. Vogel).

The authors wish to express their thanks to R. K.
Zeigler and R. H. Moore for their constructive crit-
icisms and helpful suggestions, and to F. H. Ellinger
and J. M. Leitnaker for the loan of the beta tin and
ZrB; (I) films, respectively. Also they are indebted to
M. R. Nadler for the preparation of the lithium wire.
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